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TECHNOLOGY ABSTRACTION LAYER

TECHNICAL FIELD

Embodiments pertain to hardware abstraction layers
(HALs) that can abstract privileged processor resources.

BACKGROUND

Current abstraction layers, such as the processor abstrac-
tion layer (PAL) and the system abstraction layer (SAL), are
architected such that interfaces to the abstraction layers do
not change when the underlying hardware changes, thereby
reducing the possibility that applications or operating sys-
tems (OSs) will not work when changes are made to the
hardware. It follows, then, that an application that uses the
abstraction layers can be used among systems having dif-
ferent hardware types and/or versions, as hardware-specific
implementations are abstracted from the application and OS
layers.

PAL and SAL are examples of architected HALSs, in that
all operations performed by PAL and SAL are publicly
known or useable and are implemented in software. For
example, architected features can be published in technical
documentation such as hardware datasheets, software devel-
oper’s reference manuals, processor design guides, platform
design guides, etc.

Because these HALs are architected such that they are
visible to all software, it can be difficult to provide access to
protected resources or increase the functionality of PAL or
SAL to support debug and bug fixes during validation or
after production of a processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram illustrating a firm-
ware architecture for an Intel Itanium-64 processor;

FIG. 2 is a schematic block diagram illustrating a second
firmware architecture for an Intel Itanium-64 processor;

FIG. 3 is a schematic block diagram illustrating a pro-
cessor in accordance with some embodiments;

FIG. 4 illustrates nested registers in accordance with some
embodiments;

FIG. 5 illustrates a flow chart depicting functions in
accordance with some embodiments;

FIG. 6 illustrates a simple system diagram in accordance
with some embodiments;

FIG. 7 illustrates a shared-bus computer system in accor-
dance with some embodiments; and

FIG. 8 illustrates a point-to-point (P2P) computer system
in accordance with some embodiments.

DETAILED DESCRIPTION

The following description and the drawings sufficiently
illustrate specific embodiments to enable those skilled in the
art to practice the embodiments. Other embodiments can
incorporate structural, logical, or electrical, process, and
other changes. Portions and features of some embodiments
can be included in, or substituted for, those of other embodi-
ments. Embodiments set forth in the claims encompass all
available equivalents of those claims.

FIG. 1 illustrates shows various software, firmware, and
hardware (e.g., processor) layers and interfaces for Intel
Itanium processors. An operating system software layer 100
sits at the top of the architecture. Various firmware compo-
nents reside in the next three lower layers, including an
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extensible firmware interface (EFI) layer 102, a system
abstraction layer (SAL) 104 and a processor abstraction
layer (PAL) 106. The PAL is closely connected to processor
operations, and thus sits atop a processor layer 108. The
bottom layer in the architecture is the platform hardware
110.

The layered architecture of FIG. 1 forms an abstracted set
of interfaces that can enable a common operating system
(binary) to operate on Intel Itanium-based platforms having
a variety of different configurations. An interface can be any
event that causes entry to the HAL. At the same time,
firmware-layer components are abstracted from the operat-
ing system, enabling those firmware components to support
multiple operating systems, including but not limited to
Microsoft® Windows® operating systems and various fla-
vors of Linux and UNIX operating systems.

PAL 106, SAL 104, and EFI 102 together can provide
system initialization and boot, Machine Check Abort (MCA)
handling, Platform Management Interrupt (PMI) handling,
and other processor and system functions that can vary
between implementations. The interaction of the various
functional firmware blocks is shown in FIG. 1. PAL 106
encapsulates processor implementation-specific features,
while SAL 104 is a platform-specific firmware component
that isolates operating systems and other higher-level soft-
ware from implementation differences in the platform. EFI
provides a legacy-free API interface to the operating system
loader. EFI can also be configured to support legacy com-
ponents.

EFI is a public industry specification that describes an
abstract programmatic interface between platform firmware
and OSs or other custom application environments. The EFI
framework includes provisions for extending the basic input/
output system (BIOS) functionality beyond that provided by
the BIOS code stored in a platform’s BIOS device (e.g.,
flash memory or ROM). More particularly, EFI enables
firmware, in the form of firmware modules and drivers, to be
loaded from a variety of different resources, including
primary and secondary flash devices, option ROMs, various
persistent storage devices (e.g., hard disks, CD ROMs, etc.),
and even over computer networks.

Embodiments of the disclosed technology abstraction
layer (TAL) include capabilities that would otherwise be
unavailable to the processor. These capabilities can be used
to solve problems that are otherwise difficult to solve. These
capabilities can also increase flexibility of the processor
design by including, for example, capabilities that are not
currently available in other abstraction layers. These capa-
bilities can be used by, for example, other HALs, or OS and
application layers. The TAL disclosed herein can be
described as a capability layer because it can incorporate
elements of both hardware and software not currently exist-
ing that can, for example, provide new low-level visibility
into processor operations. The term TAL is used to signify
differences from prior art HALs, such as providing visibility
to processor components that are not visible to prior art
HALs.

In contrast to prior art HALs, a TAL can abstract, or
provide an abstracted interface to, privileged processor
resources. These privileged processor resources can be unar-
chitected such that the processor resources are either not
disclosed in any technical documentation provided to pur-
chasers of the hardware, or disclosed only as an unsupported
feature. PAL and SAL do not contain any privileged func-
tions that any process cannot access. In contrast, an unar-
chitected function can be proprietary and secret. For
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example, particular opcodes for a processor might not be
publically acknowledged, and might even be protected from
use by third-party software.

To better understand how TAL can be employed in the
following embodiments, attention is drawn to FIG. 2, which
illustrates an embodiment including a third abstraction layer,
identified as Technology Abstraction Layer (TAL) 212. TAL
212 can be optionally coupled to each of processor (hard-
ware) 108, platform (hardware) 110, OS layer 100, PAL 106,
SAL 104, and EFI 102. TAL 212 can also be conceptually
between PAL 106 and processor (hardware) 108. In an
unarchitected embodiment, TAL 212 will not have a direct
interface to OS layer 100; however, instructions from OS
layer 100 can generate additional instructions to TAL 212
from PAL 106, SAL 104, or EFI 102. Other interfaces to
applications or virtual machines running above OS layer 100
are possible, however are not illustrated for simplicity.

Events or interfaces that can trigger TAL 212 can be
synchronous or asynchronous. Exemplary synchronous
events include instruction match, fault, trap, or a myriad of
pipeline events, such as issue port, instruction type, resource
conflicts, resource constraints, bandwidth constraints, etc.
Asynchronous events include timeout, counter overflow,
external interrupts, non-pipeline events, reset events, error
events, etc. Events can be triggered by both hardware (e.g.,
execution of a functional unit, such as a floating-point unit)
and software (e.g., firmware instruction). TAL 212 can be
triggered by events that are different from, or the same as,
events that trigger current SAL and PAL layers. Additional
exemplary events that can cause entry to TAL 212 include
the following:

RESET

ERROR

INTERRUPT

OPMATCH—entry when a particular opcode is matched

IVA TRANSFER—Interrupt Vector Address transfer

PERFORMANCE—e.g., cache misses greater than a pre-

defined value

operation targeting a particular address or register

fault/trap such as an instruction failure
Note that a single instruction can trigger one or more of the
events identified above. Moreover, the events or event
classes above, for example PERFORMANCE, can be trig-
gered by many different events, each causing a PERFOR-
MANCE event operation to be performed.

An exemplary processor capable of supporting TAL 212
is illustrated in block diagram form in FIG. 3. The processor
208 has a built in level 2 cache 312 and a system interface
316, which can receive instructions and data from an exter-
nal bus (not shown). Alternatively, program instructions and
data can be stored in a memory 308 or read-only memory
(ROM) 310, which is also coupled to the system interface
316. ROM 310 can also be an electronically-erasable pro-
grammable ROM (EEPROM). Processor 208 can include a
combined level one instruction cache, fetch/pre-fetch engine
and instruction translation lookaside buffer (ITLB) 320.
Caches 312 and 320 can include state information, such as
modified, exclusive, shared or invalid (MESI); an additional
TAL (T) state, discussed in more detail below, can identify
or protect TAL 212 entries. An instruction queue 324 feeds
a number of issue ports 328 that have been arranged to
receive branch instructions, memory access instructions
(M), integer operation instructions (I), and floating point
instructions (F) as indicated. The issue ports 328 feed a
register stack engine/re-mapping unit 332, which configures
onboard registers 336 and 340 for parallel processing. These
registers 336, 340 feed their respective branch and memory
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units (not shown), integer units 344, data cache and data
translation look aside buffer unit 352, and floating point
units 348 that can operate in parallel. Execution controller
335 can be used to detect TAL 212 events and initiate TAL
212 operations. Execution controller 335 can include storage
registers, such as TAL registers 334, that can include copies
of information from, for example, registers 336 and 340,
register stack engine/re-mapping unit 332 or instruction
queue 324 and other TAL-specific information. Execution
layer 335 can be coupled to, for example, onboard register
336 and 340, register stack engine/re-mapping unit 332, or
any other microarchitecturally significant feature. Other
TAL-specific resources, not illustrated, can be included,
such as cache entries, TLBs, queues, pipelines, or any other
microarchitecturally significant feature. TAL instruction
queue 338 can temporarily store instructions before they are
inserted into the processor pipeline. TAL instruction queue
338 can be the same or different size relative to instruction
queue 324; alternative embodiments can omit TAL instruc-
tion queue 338. Processor 208 can be, for example, an
explicitly parallel instruction computing (EPIC) type that
allows a programmer to ensure the parallel execution of
certain designated tasks, by selecting instructions, such as
load and add, that, by definition, force processor 208 to
execute memory fetch and arithmetic operations in parallel.

Examples of TAL configuration registers, which can be

included in execution controller 335 and TAL registers 334,
are provided below:

Switch Disable (sd): when sd=1 all thread switching is
suppressed, only explicit instruction hints will cause a
thread switch.

Bank of TAL registers (bt): The TAL Bank of general
registers are available when bt=1. A shadow copy of
this can be maintained.

TAL privileges (t): When the bit is set, TAL 212 can
access protected resources. A TALAccessViolation
(TAV) event will be generated if a TAL 212 instruction
is retired when t1=0.

PTC Shootdown HOLD (ph): Incoming operations can be
held off while ph=1.

TAL Resteer Enable (tr): An asynchronous pending TAL
event will resteer if tr=1. Unmaskable TAL 212 events
(e.g., RESET.* and Probe Mode) can resteer regardless
of this bit. A tr=0 will suppress all synchronous
OPMATCH events

(pa): This bit can enable all IVA TRANSFER events
regardless other configuration settings such that, when
set, all exceptions will cause a transition into TAL.

First After (fa): TAL 212 IVA TRANSFER and
OPMATCH events are suppressed from pending when
fa=1. This bit can be cleared on any instruction retired
after fa is set.

Diagnose (dg): When dg=1, all thread switching away
from this thread are suppressed.

Low Power (Ip): When lp=1 all thread switching to this
thread is disabled.

Probe Mode (pm): When pm=1, all data prefetch, and
front-end demand and prefetch requests are suppressed.

These registers can be programmed by BIOS or TAL to
ensure proper and efficient system operation.

Examples of TAL registers 334 are provided below:

TAL Current State: Can include a tread ID to store the ID
of the thread executing when TAL 212 is entered; count
can count the number of pending TAL 212 events;
event ID can identify an event class that triggered TAL
212, and vector ID can more particularly identify the
event of the event class that triggered entry to TAL 212.
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(Copies of the register can be made for additional
pending events or most-recently exited events)

TAL Pending: Can provide a count of the number of event
pending of each event class. For example, the number
of OPMATCH or the number of ERROR events that are
currently pending. (As with TAL Current State, the
state of TAL Pending can be copied to additional
registers for processing multiple pending TAL 212
events.)

TAL IVA: Can store the addresses of the IVA handler that
would have been used for an IVA TRANSFER event
had TAL 212 not been triggered.

When one or more of the earlier-identified events is
detected, processor 208 can begin executing a TAL 212 enter
procedure to accomplish tasks on behalf of the event that
triggered TAL 212, and can enter a security-evaluation
structure to ensure that only authorized tasks are performed
on behalf of the caller. An event causing TAL 212 to be
entered can first cause the current processor state, at the time
that the event is detected, to be preserved. (Note that, in
regard to the processor 208, the terms “context” and “state”
are interchangeable, and either term can be used herein.)
State can be understood as either the architectural or micro-
architectural state. An example of the architectural state is
the current values stored in processor registers such as the
Instruction Pointer (IP), PSR, Interrupt Instruction Bundle
(IIB), and control registers. In addition TAL 212 can pre-
serve a thread 1D, event ID, and vector ID (e.g., event within
an event class) responsible for the current TAL 212 event.
An example of the microarchitectural state is the current
state of one or more processor pipelines, which can be
preserved, flushed, and restored at a later date. Another
example can be a count field used to determine whether any
new TAL 212 events occurred while servicing the current
TAL 212 event. The event ID can identify the type of event
that triggered TAL 212. The event ID can be used to identify
unserviced events to remove from a queue of pending TAL
events. Additional information that TAL 212 can store
includes information indicating privilege, mode, IP ranges
that are enabled, and other aspects of configuration. TAL. 212
can access these and other protected registers. Each of these
registers are for illustration purposes only, and more or
fewer registers could be used.

Preserved state information need not be explicit as to the
cause of TAL 212 entry. For example, the preserved infor-
mation can be associated with a class or group of events. A
class of events, such as a group of interrupts, can trigger
identical TAL 212 events, thereby reducing the number of
unique TAL 212 configurations. The events can be identical,
or at least begin in the same manner, but can ultimately
perform different operations when more state information is
considered. For example, two interrupts can cause the same
INTERRUPT event operation to begin, but system state can
cause the ultimate operation to be different. TAL 212 can
sometimes extrapolate the exact event that caused TAL 212
entry. For example, if a floating-point operation is preserved
as the trigger of the event, and the event is associated with
functional units, TAL 212 can infer that the floating-point
unit caused entry to TAL 212. In other examples, the exact
cause of TAL 212 entry might not be able to be inferred, but
enough information to perform the TAL 212 operation exists
without knowing the exact reason for entry. Accordingly, the
current processor state is preserved such that TAL 212
operations can be performed to determine, with sufficient
granularity, which event caused entry to TAL 212. Preserv-
ing current processor state can be useful to resolve what
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caused entry to TAL 212, or to return to the preserved
processor 208 state after the TAL 212 operation is exited.

FIG. 4 illustrates preservation of processor state using
nesting. Processor state can be pushed onto a series of
registers to preserve one or more nested states. For example,
an IP register 405 can have one or more corresponding
registers 406, . . . 406, for preserving state information. In
addition, a register can store the instruction 410 that trig-
gered TAL entry in registers 411, . . . 411 . Registers
406, . ..406, and 411, . . . 411, can be pushed and popped
as needed. In doing so, information of the processor state
when TAL was entered, or while in TAL 212, is preserved
for efficient entry and exit. These registers are features that
can be architected or unarchitected, but TAL 212 can have
direct access to each in case they need to be read or
modified.

As an example, a RESET class of TAL 212 events,
including FULL, STATE, and LOGIC events, can cause
processor 208 to perform an operation using a specific
register configuration. The configuration can cause the pro-
cessor to program registers such as the sd, bt, tl, ph, tr, pa,
fa, dg, lp and pm configuration registers defined above.
Additional registers that can be programmed when TAL 212
is triggered include IP, PSR, IIB and other control registers.
In addition, or in the alternative, the configuration registers
can identify one or more FSMs, or initial states for the one
or more FSM. to perform the TAL 212 operation. By
configuring these registers, the processor can branch to a
location in the TAL 212 image that contains instructions for
performing a corresponding TAL 212 operation having a
corresponding privilege. While the events in an ERROR
class, such as CHECK and INFORM events, can cause
processor 208 to perform a different procedure with a
potentially different register configuration. (Note that event
classes are optional, and each event can have a different
associated operation or register configuration.) When TAL
212 does get control, a preserved instruction 406, or other
state information, can be used to identify why TAL 212 was
entered, which can be used by TAL 212 for decoding,
branching, or configuring the IP and other registers to
perform specific operations.

After preserving processor state, a new execution state
can be established for a TAL 212 operation associated with
the triggering event. The execution state can program reg-
isters to perform a hardware abstraction flow or TAL 212
operation; a hardware abstraction flow or operation can
comprise one or more instructions corresponding to the
detected or triggering event. Alternatively, a hardware-
implemented finite-state machine (FSM), hardwired or pro-
grammable, can be entered instead of, or in combination
with, the TAL 212 operation. Next, a hardware abstraction
flow (e.g., FSM or TAL 212 operation), which can be
predefined or constructed on-the-fly, can be initiated using,
at least in part, a series of operations or an FSM of TAL 212.
Execution can consist of doing nothing when, for example,
aprevious entry to TAL 212 obviates the need to perform the
operation again.

TAL 212 can also be used to redirect, resteer, perform
binary translation, or substitute operations of processor 208.
For example, an instruction can be redirected from a faulty
register, e.g., transistor wear-out, to a different operational
register. As another example, an operation, or sequence of
operations, can be detected that can cause a resteer of
processor 208, e.g., a new set of instructions can be executed
instead. The new operation performed as a result of the
resteer can be sourced from unarchitected, TAL-specific
resources, TAL registers 334, caches 312 or 320, ROM 310
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or memory 308, and can be chosen based on the event that
triggered entry to TAL 212. TAL 212 can perform binary
translation, e.g., an instruction or group of instructions can
be transformed from one instruction set architecture (ISA) to
another. In addition, TAL-specific instructions can trigger an
event and be ftranslated into processor-understandable
instructions. This is also known as binary translation. Hints
can be included in instructions that trigger TAL 212 to help
handle the particular event. Finally, new instructions can be
substituted for instructions that caused entry to TAL 212. For
example, an integer operation can be changed to a floating-
point operation. These features can be used to produce
abstracted operations in non-CISC architectures.

When hardware abstraction flow completes or stops, the
state at which processor 208 existed at the time the TAL 212
event was triggered can be restored, or it can be restored in
a modified or completely different state. TAL. 212 can be
exited, and control can return to the OS layer 100, applica-
tion layer(s), virtual machine, another HAL, or any other
process. If the original instruction that triggered entry to
TAL 212 is to be executed, re-entry into TAL 212 can be
suppressed for the first instruction, after restoring the origi-
nal thread, to avoid an infinite loop of entering and re-
entering TAL 212. This function

The functions described above are illustratively summa-
rized in flowchart 400 of FIG. 5. Box 501 illustrates detect-
ing a synchronous or asynchronous event in processor 208.
Box 502 illustrates preserving the current state of processor
208 such that it can be recalled, if necessary, in the future.
Box 503 illustrates establishing a new execution state for
performing a TAL 212 operation. Establishing a new execu-
tion state can comprise loading processor registers, such as
those discussed above, with information from regions of
caches 312 or 320 in the TAL (T) state, from ROM 310, or
TAL registers 334. Box 504 illustrates initiating a hardware
abstraction flow, e.g., one or more instructions or an FSM
corresponding to the detected or triggering event, or a
combination of the two. When the hardware abstraction flow
completes, execution can stop (box 505) and return to the
preserved state, a modified version of the preserved state, or
a completely new state.

TAL 212 can have dedicated resources, such as register,
data and code resources for executing operations that are not
currently possible. By using these dedicated resources, TAL
212 can synthesize instruction sequences to be executed
without requiring memory or cache for instruction storage.
Each event category can have one or more unique configu-
ration registers that state aspects of an operation to perform
(e.g., offset from TAL image to branch to, status of enables,
etc.) of all events associated with that category. All TAL 212
events can also share other resources such as an instruction
buffer for performing operations.

TAL 212 can include reliability features such as the ability
to continue execution despite corrupted execution layer code
in memory 308 or caches 312 or 320. Since TAL 212 can
exist in an un-reliable location (e.g., caches 312 or 320), it
can be advantageous for TAL 212 to be resilient to tempo-
rary and hard errors associated with resources such as caches
312 or 320. To do this, any cacheable access that encounters
an error can transition to a version of the TAL 212 image in
a trusted and more error-resilient resource, such as ROM
310. If an error occurs, the instruction can be refetched from
ROM 310 instead of from caches 312 or 320 using, at least
in part, an attribute change and a full pipeline flush. If
nesting is enabled or this is not a TAL 212 fetch, then TAL
212 can signal a normal error associated with the TAL 212
operation and enter TAL 212 as expected using a version of
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the TAL 212 image from a more resilient resource. If this
error occurred when already accessing ROM 310, then
recovery might be more difficult. For example, a fatal error
can be logged and system operations can attempt to continue
or reset can occur.

In another example, an error detected during a first TAL
212 operation can cause a second TAL 212 event. The TAL
212 operation that causes and error and entry to TAL can
cause a push of configuration registers, e.g., nesting, and a
second TAL operation can be performed before popping the
first TAL 212 operation.

TAL 212 resources (e.g., registers 334, caches 312 or 320,
and data) can be pinned into resources such as caches 312 or
320, other registers, or memory, such that they are managed
by TAL 212 and protected from external observation. In
other words, cache and data used by TAL 212 can be
invisible to and protected from other layers such as OS layer
100 or application layers because TAL 212 is unarchitected.
In one embodiment, caches 312 or 320 can protect TAL 212
code by having a TAL (T) state such that a line cannot be
evicted. The TAL state can allow for cacheable code fetches
to hit, but prevent external snoops, and data accesses from
hitting or allocating on a miss. Suppression of external
accesses to a TAL state line can ensure that others cannot see
or modity the code, thereby maintaining security. The cache
can also support writing data, tags, and state to specific
values. TAL 212 can hide cacheable code fetches by locking
cache to accesses during a TAL 212 operation or cache
access. TAL 212 can identify instances when such an
operation might be advantageous, and can transparently
perform the operation.

Alternatively, TAL-specific memory ranges in system
memory space can be protected from non-TAL operations.
For example, an extra bit can be provided to addressable
memory space, and only TAL operations can address
memory at locations having the extra bit set.

In addition to resources dedicated to TAL 212 alone, some
resources can be available to other HALs or processes
depending on privilege levels. Privilege levels can have
varying levels of protection, giving different levels of access
to the resource environment. In other words, some processor
208 features will not be accessible if a process or thread does
not have enough privilege. For example, an application
running in the OS layer 100 can access processor 208 and
have a corresponding privilege of 5, while TAL can access
processor 208 with a corresponding privilege of 2—a lower
privilege gives TAL 212 more access to processor 208 and
instructions. Privilege can be assigned per event type. For
example, RESET can have a privilege of 0 and ERROR can
have a privilege of 4.

In addition to being able to run processes with a lower
privilege value, e.g., having greater access to system
resources, TALL 212 can use the “native” privilege and
resource environment (i.e., use the privilege and resource
environment of the process that triggered TAL 212). TAL
212 can execute instructions using different privileges dur-
ing a sequence of instructions performed due to a single
event. Hence, performing operations using a less privileged
state can lead to efficient use of resources.

Additional examples of how TAL 212 can be used include
providing flexible run time services, supporting efficient
opcode emulation, support opcode/bug workarounds, pro-
viding reliable resources during Machine Check Architec-
ture (MCA) processing, providing protection/security
against tampering for TAL code image and data store, and
authenticate code source.
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As another example, an event generated by a guest
operating system in a virtuailized environment can be
handled by TAL 212 instead of the Virtual Machine Manager
(VMM). This can be useful to, for example, fix bugs,
perform data collection, or handle interrupts because TAL
212 can have more privileges than the VMM. For example,
the VMM need not be notified that an error occurred, thereby
reducing dependency on the VMM for error handling, and
allowing consistent error handling in the system. In this
manner, a computer can efficiently support more guests due
to more efficient resource utilization.

In another example, TAL 212 can provide secure storage
and management of cryptographic keys. For example, an
application can store keys in protected TAL 212 resources
that are hidden from the OS layer 100 and application layers.

TAL 212 can execute atomic or non-atomic operations.
An atomic operation can have execution or cache atomicity,
or any combination of the two. An atomic operation can
comprise one or more instructions performed consecutively
without interruption and with exclusive access to resources.
The decision of whether to use an atomic transaction can be
based on latency and availability considerations. An
example of when TAL 212 should perform a non-atomic
operation can be used includes flushing the caches 312 and
320, which might take too long from the user’s perspective.
Therefore, it can be advantageous to flush the cache in
segments and allow other operations to occur in between
flushes.

Yet another example of how TAL 212 can be used is that
a detected but uncorrected error (DUE)—a fatal error—can
be changed into a detected and corrected error (DCE)—a
non-fatal error. This can be advantageous, for example,
during debug or normal runtime environments to continue
operation after a fatal error occurs. Typically, fatal error can
cause reset, which can prevent further operation. If the fatal
error is changed to be non-fatal, then operation can continue
and useful debug information can be collected. Other
examples include the ability to modify system behaviors in
the case of a manufacturing, design, or transient defect. This
feature can provide survivability during failures or dynamic
re-configuration.

Because TAL 212 can be protected from a non-trusted OS
layer 100 or applications, it can subsume some of the
responsibilities currently in other areas, such as processor-
authentication, protection mode transitions, early determin-
ism/initialization, and error handling. Therefore, in addition
to adding new capabilities to the system, TAL 212 can be
used to perform current processes more efficiently or with
greater flexibility for the hardware designer.

TAL 212 may have two basic images: a boot image and
a run-time image. (what is important is stability) AROM can
hold both images. The run-time image can be copied by TAL
212 into cache or TAL 212-specific resources as part of the
reset initialization flow. This spilt can allow the run-time
image to be small, and execute quickly with little overhead.
The first TAL 212 instructions can come from ROM 310 or
caches 312 or 320, but the TAL 212 can include information
from other firmware locations as long as that code image is
authenticated before being used for instruction fetch. If a
code image other than ROM 310 is used, it can be advan-
tageous to provide a register (e.g., TAL_START_ALT) to
identify the location of an operation for handling code fetch
errors and reset events.

Exemplary embodiments of TAL 212 operations fit into
one of three security levels: high, medium, and low. Some
functions can use varying security levels during a single
TAL 212 operation because the verification associated with
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the medium level might be too great, e.g., take to long. TAL
212 can consciously trade performance for security in these
cases. Exemplary descriptions of three possible security
levels are below:

High security operations can have their caller and param-
eters authenticated using the authentication operations
already at hand. This ensures that these functions and
data activities are completely authentic.

Medium security operations can verify their caller address
and requested function against a list of known callers.
The input parameters might not be verified. The inclu-
sion of the function verification prevents hijacking of
the verified caller with different arguments.

Low security operations can have no verification of their
caller or requested function.

FIG. 6 illustrates an exemplary system 600 capable of
performing functions described above. The components of
system 600 were discussed in greater detail above, but are
collectively summarized here again. FIG. 6 illustrates pro-
cessor (hardware) 208 and TAL 212 coupled to L1 cache
320, which is coupled to L2 cache 312. Each of the com-
ponents of system 600 can independently communicate with
other system components. Furthermore, as described above,
events that can cause entry to TAL 212 can have varying
privileges. TAL 212 can execute one or more procedures
corresponding to the event that caused entry. The TAL 212
procedures can use the native privilege of the triggering
event, or can use different privileges having varying levels
of protection.

FIG. 7, for example, illustrates a shared-bus computer
system 700 in accordance with an exemplary embodiment.
A processor 705 accesses data from a level one (L.1) cache
memory 710 and memory 715. In other embodiments of the
invention, the cache memory may be a level two (L2) cache
or other memory within a computer system memory hier-
archy. Furthermore, in some embodiments, the computer
system of FIG. 7 may contain both a L1 cache and an [.2
cache.

The processor may have any number of processing cores.
Other embodiments of the invention, however, may be
implemented within other devices within the system, such as
a separate bus agent, or distributed throughout the system in
hardware, software, or some combination thereof.

Memory 715 can be implemented in various memory
sources, such as dynamic random-access memory (DRAM),
a hard disk drive (HDD) 720, or a memory source located
remotely from the computer system using, at least in part,
network interface 730 containing various storage devices
and technologies. The cache memory may be located either
within the processor or in close proximity to the processor,
such as on shared bus 707.

FIG. 8 illustrates a computer system 800 that is arranged
in a point-to-point (P2P) configuration. The system of FIG.
8 may also include several processors, of which only two,
processors 870, 880 are shown for clarity. Processors 870,
880 may each include a local memory controller hub (MCH)
872, 882 to connect with memory 802, 804. Processors 870,
880 may exchange data using, at least in part, a P2P interface
850 using P2P interface circuits 878, 888. Processors 870,
880 may each exchange data with a chipset 890 using, at
least in part, individual P2P interfaces 852, 854 using P2P
interface circuits 876, 886, 894, and 898. Chipset 890 may
also exchange data with a high-performance graphics circuit
838 using, at least in part, a high-performance graphics
interface 839 using P2P interface circuit 892. Chipset 890
can further be coupled using P2P interface circuit 896 to an
1/O bus 816 such as PCI to interface with I/O devices 814
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and PCI-to-PCI bridge 818. Additional I/O devices, such as
keyboard/mouse 822, comm devices 826, audio /O 824 and
data storage 828 can be coupled to system 800 using, at least
in part, PCI-to-PCI bridge 818 coupled to a bus 820. Other
embodiments of the invention, however, may exist in other
groups of circuits, logic units, or devices within the system
of FIG. 8.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that embodiments described herein can be
used for Complicated Instruction Set Computing (CISC),
and non-CISC processors (e.g., Very Long Instruction Word
(VLIW) and Reduced Instruction Set Computing (RISC)).
In other words, embodiments described herein can be archi-
tecture-independent, and can be used to abstract the hard-
ware of many different architectures. For example, Intel
Architecture has been mentioned, but other non-Intel archi-
tectures can use embodiments. This application is intended
to cover any adaptations or variations of embodiments of the
present invention. It is to be understood that the above
description is intended to be illustrative, and not restrictive,
and that the phraseology or terminology employed herein is
for the purpose of description and not of limitation. Com-
binations of the above embodiments and other embodiments
will be apparent to those of skill in the art upon studying the
above description.

The Abstract is provided to comply with 37 C.F.R.
§1.72(b) requiring an abstract that will allow the reader to
ascertain the nature and gist of the technical disclosure. It is
submitted with the understanding that it will not be used to
limit or interpret the scope or meaning of the claims. The
following claims are hereby incorporated into the detailed
description, with each claim standing on its own as a
separate embodiment.

We claim:

1. A method comprising:

detecting an event at a processor;

preserving a state of the processor at the time that the

event is detected;

establishing a new execution state for performing an

operation for a first hardware abstraction layer (HAL)
that is between a second HAL and the processor,
wherein the second HAL is a processor abstraction
layer;

initiating, using, at least in part, the first HAL, and

responsive to detecting the event, execution of a hard-
ware abstraction flow; and

stopping, using, at least in part, the processor, execution

of the hardware abstraction flow.

2. The method according to claim 1 further comprising,
restoring the preserved processor state after stopping execu-
tion of the hardware abstraction flow.

3. The method according to claim 1, wherein establishing
the new execution state comprises programming processor
registers and branching to a location in a memory to perform
the operation.
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4. The method according to claim 1, wherein establishing
the new execution state comprises performing an operation
using, at least in part, a finite state machine.

5. The method according to claim 1, wherein establishing
the new execution state further comprises flushing a pro-
cessor pipeline.

6. A system comprising:

a memory;

a memory controller coupled to the memory; and

a processor, coupled to the memory controller, compris-
ing:

a cache to perform operations associated with a tech-
nology abstraction layer (TAL), wherein events are
to trigger a TAL operation and each TAL operation
corresponds to a privilege level that can vary.

7. The system of claim 6, further comprising hardware
dedicated to the TAL.

8. The system of claim 7, wherein the hardware comprises
one or more of the following TAL-dedicated resources: one
or more registers, cache entries, translation lookaside buffer,
queues, or pipelines.

9. The system of claim 8, wherein the registers dedicated
to the TAL are adapted to preserve a state of the processor.

10. The system of claim 6, wherein the TAL operation can
change privilege one or more times.

11. The system of claim 6, wherein entries of the cache are
to include state information, and the state information com-
prises a TAL state.

12. The system of claim 6, wherein the memory comprises
TAL-specific memory ranges that are only accessible by
TAL operations.

13. A processor comprising:

a configuration register, of a technology abstraction layer
(TAL), to store configuration information to abstract
privileged processor resources, wherein the configura-
tion information includes information to perform a
TAL operation, wherein the TAL operation corresponds
to one or more respective TAL events;

wherein the TAL events include one or more of the
following: reset events, error events, interrupt events,
operation match events, interrupt address transfer
events, and performance events.

14. The processor of claim 13, wherein the TAL is adapted
to translate instructions from a first instruction set architec-
ture to a second instruction set architecture.

15. The processor of claim 13, further comprising a cache
comprising cache entries including state information, and
the state information comprising a TAL state.

16. The processor of claim 15, wherein cache entries in
the TAL state are not visible to layers other than the TAL.

17. The processor of claim 13, wherein an address is to
point to an operation to substitute an uncorrectable error for
a correctable error.

18. The processor of claim 13, wherein the configuration
registers are only accessible after entry to the TAL.
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